Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures

نویسندگان

  • Mark Ainsworth
  • Gaelle Andriamaro
  • Oleg Davydov
چکیده

Algorithms are presented that enable the element matrices for the standard finite element space, consisting of continuous piecewise polynomials of degree n on simplicial elements in R, to be computed in optimal complexity O(n). The algorithms (i) take account of numerical quadrature; (ii) are applicable to non-linear problems; and, (iii) do not rely on pre-computed arrays containing values of one-dimensional basis functions at quadrature points (although these can be used if desired). The elements are based on Bernstein polynomials and are the first to achieve optimal complexity for the standard finite element spaces on simplicial elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spline functions - computational methods

[AinAD11] Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures, SIAM J. Scient.

متن کامل

A Bernstein-bézier Basis for Arbitrary Order Raviart-thomas Finite Elements

A Bernstein-Bézier basis is developed for H(div)-conforming finite elements that gives a clear separation between the curls of the Bernstein basis for the polynomial discretisation of the space H1, and the non-curls that characterize the specific H(div) finite element space (Raviart-Thomas in our case). The resulting basis has two distinct components reflecting this separation with the basis fu...

متن کامل

Bernstein-Bézier Finite Flements on Tetrahedral- Hexahedral-Pyramidal Partitions

A construction for high order continuous finite elements on partitions consisting of tetrahedra, hexahedra and pyramids based on polynomial Bernstein-Bézier shape functions is presented along with algorithms that allow the computation of the system matrices in optimal complexity O(1) per entry.

متن کامل

Pyramid Algorithms for Bernstein-Bézier Finite Elements of High, Nonuniform Order in Any Dimension

The archetypal pyramid algorithm is the de Casteljau algorithm, which is a standard tool for the evaluation of Bézier curves and surfaces. Pyramid algorithms replace an operation on single high order polynomial by a recursive sequence of self-similar affine combinations, and are ubiquitous in CAGD for computations involving high order curves and surfaces. Pyramid algorithms have received no att...

متن کامل

A Bernstein-Bézier Based Approach to Soft Tissue Simulation

This paper discusses a Finite Element approach for volumetric soft tissue modeling in the context of facial surgery simulation. We elaborate on the underlying physics and address some computational aspects of the finite element discretization. In contrast to existing approaches speed is not our first concern, but we strive for the highest possible accuracy of simulation. We therefore propose an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2011